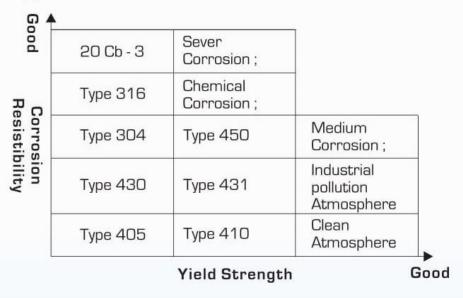


Technical Information

Introduction of Austenitic Stainless Steel


APL specializes in manufacturing Stainless Steel Fasteners which are mainly used 300 series Austenitic Stainless Steel as raw materials. The standard chemical composition of this type of Stainless steel is 18% (Cr) and 8% (N₁) thus it is also popularly know as 18 - 8 Stainless Steelakind of superior metal material which conforms to environmental protection.

1. 1. Physical Properties of Austenitic Stainless steel

The Austetenitic Stainless Steel possess excellent properties of corrosion resistability and cold-working ability. In low-temperature condition, it maintains the ability of extension and impact- resistability which prevent embrittlement and phase change from happening, even in high-temerature condition, the embrittlement is also seldom occurred. Besides, since the Austenitic Stainless Steel can't be hardened by heat treatment, it needs to be done through cold work to enhance its hardness and strength.

The Austenitic Stainless Steel is non magnetic under normal status, but it will turn to be slightly-magnetic after cold work.

Application Index of Stainless Steel in Different Circumstance

Designation (ISO 3506 - 1979 (E))

The steel grades and property classes are designation by a four-character Identifier consisting of a letter followed by three digits. The letter indicates the general composition groups of steels as follows:

- · For austenitic steels
- For martensitic steels
- For ferritic steels

Life Cycle of SS 304 Grade								
YEAR ESTIMATED FOR A PIT TO ENTER A 1 MM THICK SS SHEET								
LOCATION	SS 304							
SEA	135 YRS.							
INDUSTRIES	145 YRS.							
HOUSEHOLD	770 YRS.							

Life Cycle of S	Life Cycle of SS 316 Grade								
YEAR ESTIMATED FOR A PIT TO E	YEAR ESTIMATED FOR A PIT TO ENTER A 1 MM THICK SS SHEET								
LOCATION	SS 316								
SEA	260 YRS.								
INDUSTRIES	525 YRS.								
HOUSEHOLD	1200 YRS.								

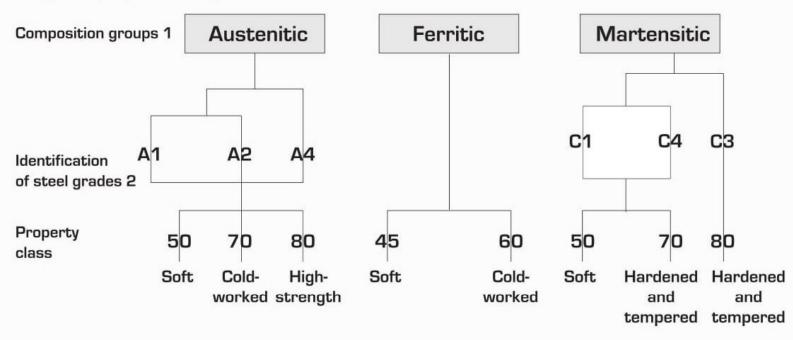
Life Cycle of S	Life Cycle of SS 430 Grade							
YEAR ESTIMATED FOR A PIT TO	ENTER A 1 MM THICK SS SHEET							
LOCATION	SS 430							
SEA	N/A							
INDUSTRIES	85 YRS.							
HOUSEHOLD	250 YRS.							

The first digit following the letter indicates the type of alloying elements presents for the particular group A, C or F, The last two digits indicate the property class (metallurgical condition); for example:

1) A2-70 indicates:

Austenitic steel, cold-worked, minimum 700 N/mm² tensile strength.

2) A2-80 indicates:


Austenitic steel, cold-worked, minimum 800 N/mm² tensile strength.

3) C4-70 indicates:

Martensitic 12 % Cr steel, hardened and tempered, minimum 700 N/mm² tensile strength.

1.2. Magnetic properties (Ref ISO 3506-1979)

All austenitic stainless steel fasteners are normally nonmagnetic; after cold working, some magnetic properties may be evident.

1.3. Chemical Requirements (ref. Asim A493)

Alloy	Di Allow	Composition, 70 Maximum Except as enown										
Group Designa Alloy tion	Alloy	С	Mn	Р	S	Si	Cr	Ni	Cu	Mo	Others	
1	S30400	304	0.08	2.00	0.045	0.030	1.00	17.0 to 20.0	8.0 to13.0	1.00		
1	S30403	302	0.03	2.00	0.045	0.030	1.00	17.0 to 19.0	8.0 to10.0	1.00		
1	S30430	Xm7	0.10	2.00	0.045	0.030	1.00	17.0 to 19.0	8.0 to10.0	3.0 to 4.0		
2	S31600	316	0.08	2.00	0.045	0.030	1.00	16.0 to 18.0	10.0 to14.0	-	2.00 to 3.00	
2	S31603	316L	0.03	2.00	0.045	0.030	1.00	16.0 to 18.0	10.0 to14.0	-	2.00 to 3.00	

Note: Xm7 equal to 302HQ

2 Mechanical Property Requirements (Ref. ASTM F593)

Stainless Alloy Group	Condition (b)	Alloy Mechanical property Marking	Nominal Diameter In Austonitic Alloys	lonsllo Strength, Ksi (d)	Yield Strength, Ksi (c, d)	Rockwell Hardness
1 (204.204.1	CW1	F593C	1/4 to 5/8, incl.	100 to 150	65	B95 to C32
(304, 304 L, Xm7 (302HQ)	CW2	F593D	3/4 to 1-1/2, incl.	85 to 140	45	B80 to C32
2	CW1	F593G	1/4 to 5/8, incl.	100 to 150	65	B95 to C32
(316, 316L)	CW2	F593H	3/4 to 1-1/2, incl.	85 to 140	45	B80 to C32

Notes:

- Minimum values except where shows as maximum or as a range.
- Legend of conditions: Cw-Headed and rolled from annealed stock thus acquiring a degree of cold work; sizes 0.75 in and larger may be not worked and solution-annoaled.
- All tensile stress values are calculated and reported in terms of the nominal tensile stress area of the thread.
- The extension measurements are determined in accordance with the test procedure and are on the actual screw or bolt length and not on a prepared test piece gauge length of 5d of the test piece.
- Above M20 the higher strength properly classes should have the properly values specially agreed upon between user and manufacturer because at the tensile strength values given in alternative values of stress at 0.2% permanent strain may occur.
- The yield and tensile strength values for full-size products shall be computed by dividing the yield and maximum tensile load Values by the stress area for the product size and thread series determined in accordance with test methods

The Requirements of Chemical Composition and Mechanical Properties for items

3.1. Chemical Requirements (ref DIN en iso 3506)

Alloy Group Grade	Chemical Composition in (mm)									Notes	
	С	Si	Mn	Р	S	Cr	Mo	Ni	Cu	Notes	
Austenitic	A2	0.1	1	2	0.05	0.03	15 to 20	А	8 to 19	4	B. C.
	Α4	0.08	1	2	0.045	0.03	16 to 18.5	2 to 3	10 to 15	1	C. D.

- A. Molybdenum may be present at the discretion of the manufacturer. However, if for some applications limiting of the molybdenum Contents is essential this must be stated at the time of ordering by the purchaser.
- B. If the Chromium content is below 17%, the minium nickel content should be 12%.
- C. For Austenitic Stainless Steel having a maximum carbon content of 0.03% nitrogen may be present to a maximum of 0.22%.
- D. At the discretion of the manufacturer the carbon content may be higher where required to obtain the specified mechanical Properties at larger diameters but shall not exceed 0.12% for Austenitic Steels.
- E. May contain copper up to 4.0 per cent maximum as per IS: 1367 (Part 14) 1984

3.2 Mechanical Properties Requirements (Ref. DIN EN ISO 3506)

Group	Grade	Property Class	Thread Diameter Range	Tensile Strength Rm (1) min N/mm	Stores at 0.2% Permanent strain Rp 0.2 [1] min N/mm	Elongation after fraction A (2) min mm
		50	< M39	500	210	0.6d
Austenitic	A2, A4	70	< M24 (3)	700	450	0.4d
		80	< M24 (3)	800	600	0.3d

- 1. The tensile stress is calculated on the stress area.
- 2. To be determined according to test methods on actual screw length and on a prepared test piece is; the nominal thread Diameter.
- 3. All tensile stress values are calculated and reported in terms of the nominal tensile stress area of the thread.
- 4. The extension measurements are determined in accordance with the test procedure and are on the actual screw or bolt length and not on a prepared test piece gauge length of 5d of the test piece.
- 5. Above M20 the higher strength properly classes should have the properly values specially agreed upon between user and manufacturer because at the tensile strength values given in the table alternative values of stress at 0.2% permanent strain may occur.

Group	Grade	Property Class	Diameter Range	Tensile Strength Rm [1] N/mm² min.	Stores at 0.2% Permanent strain Rp 0.2 N/mm² min.	Extension A _L (2) min.	Proof load stress S _p N/mm ²
Austenitic A 1, A 2 and A 4	4140	50	< M39	500	210	0.6d	500
	70	< M20 ⁽³⁾	700	450	0.4d	700	
	anu A 4	80	< M20 ⁽³⁾	800	600	0.3d	800

3.3 Mechanical Properties Requirements (Ref. DIN EN ISO 3506)

Size Standard	M	Minimum Breaking Torque					
Pitch	50 N - M	70 N - M	80 N - M	-			
M 1.6	0.15	0.20	0.27	-			
M 2	0.30	0.40	0.56	150.00			
M 2.5	0.60	0.90	1.20	242.86			
М 3	1.10	1.60	2.10	356.77			
M 4	2.70	3.80	4.90	627.93			
M 5	5.50	7.80	10.00	1013.25			
M 6	9.30	13.00	15.00	1434.25			
M 8	23.00	32.00	37.00	2611.62			
M 10	46.00	65.00	74.00	44138.63			
M 12	80.00	110.00	130.00	6015.29			
M 14	7-	157.00	-	8214.28			
M 16	210.00	290.00	330.00	11202.85			
M 18				13714.29			
M 20				17580.00			

3.4. Mechanical properties at elevated temperature; Applications at Low Temperature.

The values given in these tables are for guidance only. User should understand that the actual chemistry ,load of the installed fasteners and the environment, may cause significant variation. If loads are fluctuating and operating at elevated Temperatures the possibility of stress corrosion is high, user should consult the manufacture

3.4.1 Influence of temperature on ReL and Rp 0.2 (Ref. DIN EN ISO 3506)

Steel grade				
-	+ 100° C	+ 200° C	+ 300° C	+ 400° C
A2 A4	85	80	75	70
C1	95	90	80	65
C3	90	85	80	60

3.4.2 Application at low temperatures (Ref. DIN EN ISO 3506)

Steel grade	Lower limits of operational temp. at continuous operation						
A2	- 200 C						
A4	95	90	80	65			
	90	85	80	60			

A. In connections with the alloying element the stability of the Austenitic is reduced and the transition temperature is shifted to higher values if a high degree of deformation during manufacturing of the fastener is applied.